RUS  ENG
Полная версия
ЖУРНАЛЫ // Теоретическая и математическая физика // Архив

ТМФ, 2019, том 200, номер 1, страницы 19–49 (Mi tmf9658)

Эта публикация цитируется в 6 статьях

Операторы разрезания и склейки и получение полиномов Макдональда из 3-функций Шура

А. Ю. Морозовab

a Институт теоретической и экспериментальной физики им. А. И. Алиханова Национального исследовательского центра "Курчатовский Институт", Москва, Россия
b Институт проблем передачи информации им. А. А. Харкевича Российской академии наук, Москва, Россия

Аннотация: Функции Шура допускают несколько загадочную деформацию, приводящую к полиномам Макдональда и Керова, у которых нет прямой теоретико-групповой интерпретации, но сохраняется большинство важных свойств функций Шура. Однако семейство функций Шура–Макдональда уже недостаточно велико: для различных приложений сегодня требуются их пока что неизвестные аналоги, перечисляемые плоскими разбиениями, т. е. трехмерными диаграммами Юнга. Недавно был предложен конкретный путь к такому обобщению и описаны чудесные совпадения, которые вселяют надежду на то, что он может вести в правильном направлении. Однако даже в этом случае предстоит большая работа для превращения идеи o таких обощенных 3-функциях Шура в обоснованную и эффективно работающую теорию. В частности, можно ожидать что функции Макдональда (а при удаче и все функции Керова) войдут в эту теорию на равных правах с обычными функциями Шура. Подробно описано, как это работает для полиномов Макдональда, когда векторнозначные времена, ассоциированные с трехмерными диаграммами и являющиеся аргументами 3-функций Шура, проецируются на обычные скалярные времена под ненулевыми углами, которые могут зависеть от макдональдовых параметров $q$ и $t$. Показано, как операторы разрезания и склейки дают гладкую интерполяцию между разными предельными случаями. Бо́льшая часть примеров ограничена уровнем 2.

Ключевые слова: плоские разбиения, полиномы Макдональда.

Поступило в редакцию: 06.12.2018
После доработки: 06.12.2018

DOI: 10.4213/tmf9658


 Англоязычная версия: Theoretical and Mathematical Physics, 2019, 200:1, 938–965

Реферативные базы данных:


© МИАН, 2024