Аннотация:
Определен класс периодических электрических потенциалов, для которых спектр двумерного оператора Шредингера абсолютно непрерывен в случае однородного магнитного поля $B$ с рациональным потоком $\eta =(2\pi )^{-1}Bv(K)$, где $v(K)$ – площадь элементарной ячейки $K$ решетки периодов потенциала. С использованием свойств функций из этого класса доказано, что в пространстве периодических электрических потенциалов из пространства $L^2_{\mathrm{loc}}(\mathbb R^2)$ с заданной решеткой периодов, отождествляемом с $L^2(K)$, существует множество второй категории (в смысле Бэра) такое, что для любого потенциала из этого множества и любого однородного магнитного поля с рациональным потоком $\eta$ спектр двумерного оператора Шредингера абсолютно непрерывен.