Аннотация:
Выведена общая формула, дающая представление статистической суммы одномерной модели Изинга для системы $N$ частиц в виде явно заданного функционала от спектральных инвариантов конечных подматриц некоторой бесконечной тёплицевой матрицы. Получено асимптотическое представление статистической суммы при больших $N$, которое может быть основой для точного вычисления некоторых термодинамических средних, например удельной свободной энергии, в случае общего трансляционно-инвариантного спинового взаимодействия (необязательно лишь между ближайшими соседями). Получены верхняя и нижняя оценки статистической суммы в плоскости комплексной переменной $\beta$ ($\beta$ – обратная температура), и рассмотрены условия, при которых эти оценки асимптотически эквивалентны при $N\to\infty $.