Аннотация:
Рассматривается одномерный оператор Шредингера с квазиклассическим малым параметром $h$. Показано, что “глобальная” асимптотика его связанных состояний через функцию Эйри работает не только для возбужденных состояний $n\sim 1/h$, но и для слабовозбужденных состояний $n\sim 1/h^\alpha$, $\alpha>0$, причем в примерах соответствующие номера $n$ начинаются с $n=2$ или даже с $n=1$. Доказана близость такой асимптотики к собственной функции приближения гармонического осциллятора.
Ключевые слова:связанные состояния, оператор Шредингера, квазиклассическое приближение, асимптотика, собственные функции, гармонический осциллятор, функция Эйри.