Аннотация:
Отсутствие достаточного количества данных шепотной речи для обучения является серьезной проблемой для современных систем автоматического распознавания речи (АРР). Из-за большого акустического различия между обычной и шепотной речью АРР системы значительно снижают производительность при обработке шепота.
В статье приведен анализ подходов к распознаванию нейтральной и шепотной речи на основе традиционных скрытых марковских моделей (СММ) для дикторозависимых (SD) и дикторонезависимых (SI) случаев. Особое внимание уделяется распознаванию шепотной речи с использованием нейтральной речи на этапе обучения (сценарий N/W). Система АРР разработана для распознавания изолированных слов из базы данных (Whi-Spe), включающей пары слов реально произнесенной речи нейтрально и шепотом. В сценарии N/W увеличение надежности достигается с применением предлагаемого частотного преобразования, изначально разработанного для сжатия и декомпрессии речевого сигнала в цифровых телекоммуникационных системах. Вместе с тем сохраняются хорошие показатели в распознавании нейтральной речи.
По сравнению с базовой моделью распознавания с применением Мел-частотных кепстральных коэффициентов (MFCC) точность распознавания слов с использованием кепстральных коэффициентов, полученных с помощью предложенного частотного деформирования (обозначаемого как $\mu$FCC), улучшена на 7,36% (SD) и 3,44% (SI) в абсолютных значениях. Кроме того, $\mathrm{F}$-мера (гармоническое среднее значение точности и полноты) для векторов признаков $\mu$FCC увеличивается на 6,90% (SD) и 3,59 %(SI). Статистические тесты подтверждают значимость достигнутого улучшения точности распознавания.