RUS  ENG
Полная версия
ЖУРНАЛЫ // Информатика и автоматизация // Архив

Тр. СПИИРАН, 2018, выпуск 60, страницы 156–188 (Mi trspy1026)

Эта публикация цитируется в 1 статье

Искусственный интеллект, инженерия данных и знаний

Дуальная оптимизация тоновой аппроксимации монохромных изображений параллельным эволюционно-генетическим поиском

Р. А. Нейдорф, А. Г. Агаджанян

Донской Государственный Технический Университет

Аннотация: Рассматривается оптимизация процедуры тоновой аппроксимации полутоновых (например, в палитре серого цвета) изображений. Процедура тоновой аппроксимации подразумевает сокращение в палитре аппроксимированного изображения количества используемых тонов по сравнению с количеством тонов в палитре исходного изображения. Оптимизация этой процедуры заключается в минимизации потери качества передачи графической информации, которая оценивается суммарным или усредненным по изображению отклонением тонов координатно-идентичных пикселей аппроксимированного изображения от тонов исходного. В качестве инструмента оптимизации предлагается гибридный алгоритм, который совмещает эвристический и детерминированный алгоритмы поиска наилучшей по критерию минимизации ошибки аппроксимации структуры аппроксимирующей палитры. Эвристический алгоритм реализован на основе эволюционно-генетической парадигмы. Его задачей является поиск области тоновых структур аппроксимирующей палитры, максимально близких к оптимальной. Цель детерминированного алгоритма направленного перебора — найти ближайший к полученному предыдущим поиском результату экстремум критерия качества аппроксимации. Эвристический алгоритм, как более быстродействующий, нацелен на оперативное сокращение области поиска, а детерминированный, как более затратный, — на нахождение хотя бы локального экстремума (а, возможно, и глобального) по максимально сокращенному предыдущим алгоритмом пути. Совместная работа этих алгоритмов позволяет обеспечить процессу тоновой аппроксимации эффект оптимизации, названный в статье дуальной. Под этим термином подразумевается получение результата, при котором достигается экстремум критерия качества аппроксимации при минимизации времени его достижения. Описываемое в статье исследование посвящено повышению результативности гибридного алгоритма на эвристическом этапе, в качестве которого используется модифицированный эволюционно-генетический алгоритм. Рассматриваются перспективы разработки и оценки эффективности внедрения модели параллельного использования алгоритмов с различными параметрами настройки. Обсуждаются первичные эксперименты, а их результаты сравниваются с известным алгоритмом решения поставленной задачи.

Ключевые слова: тоновая аппроксимация, гибридизация, параллельная модель, оптимизация, адаптивная схема, эволюционно-генетический алгоритм, аппроксимирующая палитра.

УДК: 004.932

Поступила в редакцию: 16.04.2018

DOI: 10.15622/sp.60.6



Реферативные базы данных:


© МИАН, 2024