RUS  ENG
Полная версия
ЖУРНАЛЫ // Информатика и автоматизация // Архив

Информатика и автоматизация, 2021, выпуск 20, том 3, страницы 497–529 (Mi trspy1151)

Эта публикация цитируется в 2 статьях

Искусственный интеллект, инженерия данных и знаний

Аналитический обзор систем автоматического определения депрессии по речи

А. Н. Величко, А. А. Карпов

СПб ФИЦ РАН

Аннотация: В последние годы в медицинской и научно-технической среде возрос интерес к задаче автоматического определения наличия депрессивного состояния у людей. Депрессия является одним из самых распространенных психических заболеваний, непосредственно влияющих на жизнь человека. В данном обзоре представлены и проанализированы работы за последние два года на тему определения депрессивного состояния у людей. Приведены основные понятия, относящиеся к определению депрессии, описаны как одномодальные, так и многомодальные корпусы, содержащие записи информантов с установленным диагнозом депрессии, а также записи контрольных групп, людей без депрессии.
Рассмотрены как теоретические исследования, так и работы, в которых описаны автоматические системы для определения депрессивного состояния — от одномодальных до многомодальных. Часть рассмотренных систем решает задачу регрессивной классификации, предсказывая степень тяжести депрессии (отсутствие, слабая, умеренная, тяжелая), а другая часть – задачу бинарной классификации, предсказывая наличие заболевания у человека или его отсутствие. Представлена оригинальная классификация методов вычисления информативных признаков по трем коммуникативным модальностям (аудио, видео и текстовая информация). Описаны современные методы, используемые для определения депрессии в каждой из модальностей и в совокупности. Наиболее популярными методами моделирования и распознавания депрессии в рассмотренных работах являются нейронные сети. В ходе аналитического обзора выявлено, что основными признаками депрессии считаются психомоторная заторможенность, которая влияет на все коммуникативные модальности, и сильная корреляция с аффективными величинами валентности, активации и доминации, при этом наблюдается обратная корреляция между депрессией и агрессией. Выявленные корреляции подтверждают взаимосвязь аффективных расстройств с эмоциональными состояниями человека. В множестве рассмотренных работ наблюдается тенденция объединения модальностей для улучшения качества определения депрессии.

Ключевые слова: автоматическое определение депрессии, компьютерная паралингвистика, речевые технологии, машинное обучение.

УДК: 621.391:004.934.2

DOI: 10.15622/ia.2021.3.1



© МИАН, 2024