RUS  ENG
Полная версия
ЖУРНАЛЫ // Информатика и автоматизация // Архив

Информатика и автоматизация, 2022, выпуск 21, том 2, страницы 427–453 (Mi trspy1196)

Искусственный интеллект, инженерия данных и знаний

Анализ данных разновременной мультиспектральной аэрофотосъемки для обнаружения границ исторического антропогенного воздействия

А. С. Шаура, А. Г. Злобина, И. В. Журбин, А. И. Баженова

Удмуртский федеральный исследовательский центр Уральского отделения Российской академии наук

Аннотация: В работе представлено применение алгоритма статистического анализа данных разновременной мультиспектральной аэрофотосъемки с целью выявления участков исторического антропогенного воздействия на природную среду. Исследуемый участок расположен на окраине поселка городского типа Знаменка (Знаменский район Тамбовской области) в лесостепной зоне с типичными черноземными почвами, где во второй половине XIX – начале XX вв. были расположены пашни. Признаком для выявления следов исторического антропогенного воздействия может быть растительность, возникшая в результате вторичной сукцессии на заброшенных участках. Отличительной особенностью такой растительности от окружающей природной среды является ее тип, возраст и плотность произрастания. Таким образом, задача обнаружения границ антропогенного воздействия по мультиспектральным изображениям сводится к задаче классификации растительности. Исходными данными являлись результаты разновременной мультиспектральной съемки в зеленом (Green), красном (Red), краевом красном (RedEdge) и ближнем инфракрасном (NIR) спектральных диапазонах. На первом этапе алгоритма предполагается вычисление текстурных признаков Харалика по данным мультиспектральной съемки, на втором этапе – уменьшение количества признаков методом главных компонент, на третьем – сегментация изображений на основе полученных признаков методом k-means. Эффективность предложенного алгоритма показана при сопоставлении результатов сегментации с эталонными данными исторических картографических материалов. Полученный результат сегментации отражает не только конфигурацию участков анотропогенно-преобразованной природной среды, но и особенности зарастания заброшенной пашни, поскольку исследование разновременных мультиспектральных снимков позволяет более полно охарактеризовать и учесть динамику наращивания фитомассы в разные периоды вегетации.

Ключевые слова: мультиспектральная съемка, текстурная сегментация, признаки Харалика, метод главных компонент, кластеризация, k-means, разновременные данные, период вегетации, вторичная сукцессия.

УДК: 004.93

Поступила в редакцию: 20.07.2021

DOI: 10.15622/ia.21.2.8



© МИАН, 2024