RUS  ENG
Полная версия
ЖУРНАЛЫ // Информатика и автоматизация // Архив

Информатика и автоматизация, 2022, выпуск 21, том 4, страницы 659–677 (Mi trspy1204)

Искусственный интеллект, инженерия данных и знаний

Рандомизированное машинное обучение и прогнозирование нелинейных динамических моделей c применением к эпидемиологической модели SIR

А. Ю. Попков, Ю. А. Дубнов, Ю. С. Попков

Федеральный исследовательский центр «Информатика и управление» Российской академии наук

Аннотация: В работе предлагается подход к оцениванию параметров нелинейных динамических моделей с помощью концепции Рандомизированного машинного обучения (РМО), основанной на переходе от детерминированных моделей к случайным (со случайными параметрами) с последующим оцениванием вероятностных распределений параметров и шумов по реальным данным. Главной особенностью данного метода является его эффективность в условиях малого количества реальных данных. В работе рассматриваются модели, сформулированные в терминах обыкновенных дифференциальных уравнений, которые преобразуются к дискретному виду для постановки и решения задачи энтропийной оптимизации. Применение предлагаемого подхода демонстрируется на задаче прогнозирования общего количества инфицированных COVID-19 с помощью динамической эпидемиологической модели SIR. Для этого в работе строится рандомизированная модель SIR (R-SIR) с одним параметром, энтропийно-оптимальная оценка которого реализуется его функцией плотности распределения вероятностей, а также функциями плотности распределения вероятностей измерительных шумов в точках, в которых производится обучения. Далее применяется техника рандомизированного прогнозирования с фильтрацией шумов, основанная на генерации соответствующих распределений и построении ансамбля прогнозных траекторий с вычислением средней по ансамблю траектории. В работе реализуется вычислительный эксперимент с использованием реальных оперативных данных о заболеваемости в виде сравнительного исследования с известным методом оценивания параметров модели, основанным на методе наименьших квадратов. Полученные в эксперименте результаты демонстрируют существенное снижение средне-абсолютной процентной ошибки (MAPE) при по отношению к реальным наблюдениям на интервале прогноза, что показывают работоспособность предложенного метода и его эффективность в задачах рассматриваемого в работе типа.

Ключевые слова: рандомизированное машинное обучение, энтропия, энтропийное оценивание, прогнозирование, рандомизированное прогнозирование.

УДК: 004.942

Поступила в редакцию: 06.07.2022

DOI: 10.15622/ia.21.4.1



© МИАН, 2024