Аннотация:
Алгоритмы глубокого обучения сыграли важную роль в решении многих комплексных задач, за счет автоматического изучения правил (алгоритмов) на основе выборочных данных, которые затем сопоставляют входные данные с соответствующими выходными данными. Цель работы: выполнить классификацию земных покровов (LULC) спутниковых снимков Московской области на основе обучающих данных и сравнить точность классификации, полученной с применением ряда моделей глубокого обучения. Методы: точность, достигаемая при классификации земных покровов с использованием алгоритмов глубокого обучения и данных космической съёмки, зависит как от конкретной модели глубокого обучения, так и от используемой обучающей выборки. Мы использовали наиболее современные модели глубокого обучения и обучения с подкреплением вкупе с релевантным набором обучающих данных. Для тонкой корректировки параметров моделей и подготовки обучающего набора данных применялись разливные методы, в том числе аугментация данных. Результаты: Применены четыре модели глубокого обучения на основе архитектур Residual Network (ResNet) и Visual Geometry Group (VGG) на основе обучения с подкреплением: ResNet50, ResNet152, VGG16 и VGG19. Последующее до-обучение моделей выполнялось с использованием обучающих данных, собранных спутником ДЗЗ Sentinel-2 на территории Московской области. На основе оценки результатов, архитектура ResNet50 дала наиболее высокую точность классификации земных покровов на территории выбранного региона. Практическая значимость: авторы разработали алгоритм обучения четырёх моделей глубокого обучения с последующей классификацией фрагментов входного космического снимка с присвоением одного из 10 классов (однолетние культуры, лесной покров, травянистая растительность, автодороги и шоссе, промышленная застройка, пастбища, многолетние культуры, жилая застройка, реки и озера).