RUS  ENG
Полная версия
ЖУРНАЛЫ // Информатика и автоматизация // Архив

Информатика и автоматизация, 2023, выпуск 22, том 4, страницы 795–825 (Mi trspy1256)

Эта публикация цитируется в 3 статьях

Информационная безопасность

Aafndl - an accurate fake information recognition model using deep learning for the vietnamese language

[AAFNDL — точная модель распознавания поддельной информации с использованием глубокого обучения вьетнамского языка]

N. V. Hungab, T. Q. Loib, N. T. Huongb, T. T. Hangb, T. T. Huonga

a Hanoi University of Science and Technology
b East Asia University of Technology

Аннотация: В интернете «фейковые новости» - это распространенное явление, которое часто беспокоит общество, поскольку содержит заведомо ложную информацию. Проблема активно исследовалась с использованием обучения с учителем для автоматического обнаружения фейковых новостей. Хотя точность растет, она по-прежнему ограничивается идентификацией ложной информации через каналы на социальных платформах. Это исследование направлено на повышение надежности обнаружения фейковых новостей на платформах социальных сетей путем изучения новостей с неизвестных доменов. Особенно трудно обнаружить и предотвратить распространение информации в социальных сетях во Вьетнаме, потому что все имеют равные права на использование интернета для разных целей. Эти люди имеют доступ к нескольким платформам социальных сетей. Любой пользователь может публиковать или распространять новости через онлайн-платформы. Эти платформы не пытаются проверять пользователей, их местоположение или содержимое их новостей. В результате некоторые пользователи пытаются распространять через эти платформы фейковые новости для пропаганды  против отдельного лица, общества, организации или политической партии. Мы предложили проанализировать и разработать модель распознавания фейковых новостей с использованием глубокого обучения (называемого AAFNDL). Метод выполнения работы: 1) во-первых, анализируем существующие методы, такие как представление двунаправленного кодировщика от преобразователя (BERT); 2) приступаем к построению модели для оценки; 3) подходим к применению некоторых современных методов к модели, таких как метод глубокого обучения, метод классификатора и т.д., для классификации ложной информации. Эксперименты показывают, что наш метод может улучшить результаты на 8,72% по сравнению с другими методами.

Ключевые слова: социальные сети, вычислительное моделирование, глубокое обучение, извлечение признаков, алгоритмы классификации, фейковые новости, BERT, TF-IDF, PhoBERT.

Поступила в редакцию: 11.04.2023

Язык публикации: английский

DOI: 10.15622/ia.22.4.4



© МИАН, 2024