Аннотация:
В современном мире Интернет вещей стал неотъемлемой частью нашей жизни. Растущее число умных устройств и их повсеместное распространение усложняют разработчикам и системным архитекторам эффективное планирование и внедрение систем Интернета вещей и промышленного Интернета вещей. Основная цель данной работы – автоматизировать процесс проектирования промышленных систем Интернета вещей при оптимизации параметров качества обслуживания, срока службы батареи и стоимости. Для достижения этой цели вводится общая четырехуровневая модель туманных вычислений, основанная на математических множествах, ограничениях и целевых функциях. Эта модель учитывает различные параметры, влияющие на производительность системы, такие как задержка сети, пропускная способность и энергопотребление. Для нахождения Парето-оптимальных решений используется генетический недоминируемый алгоритм сортировки II, а для определения компромиссных решений на Парето-фронте – метод определения порядка предпочтения по сходству с идеальным решением. Оптимальные решения, сгенерированные этим подходом, представляют собой серверы, коммуникационные каналы и шлюзы, информация о которых хранится в базе данных. Эти ресурсы выбираются на основе их способности улучшить общую производительность системы. Предлагаемая стратегия следует трехэтапному подходу для минимизации размерности и уменьшения зависимостей при исследовании пространства поиска. Кроме того, сходимость оптимизационных алгоритмов улучшается за счет использования предварительно настроенной начальной популяции, которая использует существующие знания о том, как должно выглядеть решение. Алгоритмы, используемые для генерации этой начальной популяции, описываются подробно. Для иллюстрации эффективности автоматизированной стратегии приводится пример ее применения.