Аннотация:
Предлагается использование нейросетевой аппроксимации для расчета вероятностно-временных характеристик многоканальных систем массового обслуживания (СМО) и неограниченной емкостью очереди. Приводятся результаты численных экспериментов, показывающие, что по сравнению с численными итерационными алгоритмами достигается существенное снижение трудоемкости вычислений вероятностно-временных характеристик многоканальных СМО с «разогревом» при незначительной погрешности расчета характеристик. Обоснованы целесообразность применения метода Байесовской регуляризации для обучения нейросети и наилучшее число нейронов.
Ключевые слова:многоканальные системы массового обслуживания; нейросети; аппроксимация; системы обслуживания с «разогревом».