Аннотация:
В статье описаны результаты обработки электромиограммы (ЭМГ) и результаты распознавания мимических движений алгоритмом радиальной базисной функции нейронной сети (НС). В качестве входного вектора признаков использовались девять признаков-функций ЭМГ во временной области. Наиболее высокая точность распознавания и скорость обучения получены для признака «Максимальные значения», наихудший результат получен для признака «Среднее арифметическое». На основе полученных данных предложен алгоритм распознавания движений. Классификатор может применяться для создания интерфейсов вида «человек-машина».