Аннотация:
В статье предлагается обобщенный гибридный подход к построению коллектива классификационных правил на примере решения задачи выявления аномальных сетевых соединений. Выделяется пять этапов в рассматриваемой методике. Первый этап включает в себя настройку адаптивных классификаторов. На втором этапе выполняется сигнатурный анализ, сборка сетевых соединений и формирование сетевых параметров. Третий этап заключается в предобработке сетевых параметров. На четвертом этапе осуществляется обход в ширину дерева классификаторов совместно с их обучением или тестированием. На пятом этапе выявляются аномальные сетевые соединения. Особенностями предлагаемой методики являются возможность задания произвольной вложенности классификаторов друг в друга и ленивое подключение классификаторов благодаря нисходящему каскадному обучению общего коллектива классификационных правил. Приводятся результаты экспериментов с использованием открытого набора данных для вычисления показателей эффективности обнаружения и классификации сетевых аномалий.