Аннотация:
Предложен алгоритм формирования системы эффективных классификационных характеристик, основанный на концепции усеченного перебора и использовании информации об индивидуальных показателях классификации при выборе гранул. Его вычислительная эффективность обеспечивается применением операций простого сравнения результатов классификации отдельных классов при выборе наиболее информативной гранулы на очередной итерации и использованием технологии параллельных вычислений на графических процессорах.
Рассмотрены известные методы усеченного перебора для формирования систем эффективных классификационных характеристик. Обсуждаются результаты поиска информативных признаков на примере решения задачи классификации облачности на основе применения вероятностной нейронной сети и информации о текстуре спутниковых снимков MODIS. Представлено описание используемого классификатора и статистического подхода к описанию текстуры изображений.
Определены наиболее эффективные классификационные характеристики облачности путем сравнения комбинаций текстурных признаков, полученных с помощью методов усеченного перебора. Показаны результаты исследования динамики изменения оценки правильно проклассифицированных облаков при выполнении различных алгоритмов поиска информативных признаков. Установлено, что разработанный в данной работе метод позволяет уменьшить разброс значений вероятности правильной классификации отдельных классов.