Аннотация:
Исследуется задача построения нелинейных и линейных определенных в конечном поле генераторов квазиортогональных матриц семейства Адамара с малым количеством отличных между собой значений их элементов, не превосходящих по абсолютной величине 1, и глобальным или локальным значением детерминанта. Проанализированы свойства таких динамических систем, приведена классификация полученных с их помощью семейств матриц и их орнаментов, показан путь доказательства существования вещественных и целочисленных матриц, отличный от средств комбинаторного подхода. Значения, которым равны элементы матрицы, названы ее уровнями. Введены понятия адамаровой нормы и определителя квазиортогональной матрицы. Уровни, адамарова норма и определитель играют фундаментальную роль в определениях классов обобщенных матриц семейства Адамара. Выделены классы матриц Адамара, Белевича (конференц-матриц), Себерри (взвешенных матриц), Мерсенна, Эйлера, Одина (Зейделя), Ферма. Приведены формулы для значений их уровней. Орнаменты матриц Эйлера отвечают на вопрос максимальной сложности структуры матриц Адамара — бицикл с двойной каймой.