RUS  ENG
Полная версия
ЖУРНАЛЫ // Информатика и автоматизация // Архив

Тр. СПИИРАН, 2018, выпуск 57, страницы 26–44 (Mi trspy996)

Эта публикация цитируется в 1 статье

Цифровые информационно-телекоммуникационные технологии

A novel fuzzy QOS based improved honey bee behavior algorithm for efficient load balancing in cloud

[Балансировка загруженности облачных вычислений на основе улучшенного алгоритма поведения пчелиной колонии]

M. A. S. Mosleh, G. Radhamani

Dr. G.R. Damodaran College of Science

Аннотация: На данный момент применение основанного на явлениях в природе алгоритма балансировки нагрузки задач на виртуальных машинах представляет большой исследовательский интерес. Для балансировки нагрузки с максимальной пропускной способностью была введена балансировка нагрузки на основе поведения медоносных пчел в колонии — Honey Bee Behavior Based Load Balancing (HBB-LB). Этот подход также устанавливает приоритеты выполнения задач на виртуальной машине с целью минимизации времени ожидания задач. Однако он рассматривает только один параметр — нагрузку виртуальных машин, что может оказаться недостаточно эффективным для балансировки. В работе предлагается улучшенный подход к балансировке нагрузки на основе пчелиного поведения, в котором дополнительно учитываются такие параметры качества обслуживания (QoS) виртуальных машин, как время отклика службы, доступность, надежность, стоимость и пропускная способность для улучшения балансировки нагрузки. Время отклика является критически важным для определения мгновенной активности виртуальной машины, доступность определяет доступный ресурс и состояние виртуальной машины (пассивное или активное), а надежность определяет уровень доверия к виртуальной машине. Затраты на использование виртуальной машины и пропускная способность виртуальных машин также необходимы для определения их эффективности. Однако включение нескольких параметров качества обслуживания приводит к многоцелевой оптимизации. По мере вычисления нескольких параметров фаззификация значений качества обслуживания выполнялась с помощью генерируемых нечетких правил, и была устранена проблема многоцелевой оптимизации. Эксперименты проводились с точки зрения времени разрешения задач, времени отклика, степени дисбаланса и количества перенесенных задач, а результаты показывают, что балансировка нагрузки на основе пчелиного поведения обеспечивает лучший уровень производительности.

Ключевые слова: оптимизация; параметры качества обслуживания; облачные вычисления; балансировка нагрузки; фаззификация.

УДК: 004

Язык публикации: английский

DOI: 10.15622/sp.57.2



Реферативные базы данных:


© МИАН, 2024