Аннотация:
Определены естественные понятия перроновской и верхнепредельной устойчивости нулевого решения дифференциальной системы, а также их многочисленные разновидности: от глобальной до частной устойчивости или неустойчивости и аналоги тех же свойств, распространяющиеся не на все, а на почти все возмущенные решения. Исследованы их логические связи с соответствующими ляпуновскими понятиями и друг с другом, со знаками показателей Перрона, Ляпунова и со специальными индикаторами. Изучены их специфические особенности для одномерных, автономных и линейных систем. В частности, доказана независимость большинства этих свойств от фазовой области системы. Обнаружено полное совпадение возможностей исследования по первому приближению устойчивости и асимптотической устойчивости всех трёх типов. Аналогичное совпадение установлено для частичной и частной устойчивости по первому приближению, а в одномерном случае — сразу для всех перечисленных видов устойчивости, равно как и для всех видов неустойчивости. Библиография: 46 названий.