Аннотация:
Работа представляет собой обзор по полученным ранее, а также новым случаям интегрируемости в динамике трехмерного твердого тела, находящегося в неконсервативном поле сил. Исследуемые задачи описываются динамическими системами с так называемой переменной диссипацией с нулевым средним. Задача поиска полного набора трансцендентных первых интегралов систем с дисипацией является достаточно актуальной, и ей было ранее посвящено множество работ. Введен в рассмотрение новый класс динамических систем, имеющих периодическую координату. Благодаря наличию в таких системах нетривиальных групп симметрий показано, что рассматриваемые системы обладают переменной диссипацией, означающей, что в среднем за период по имеющейся периодической координате диссипация в системе равна нулю, хотя в разных областях фазового пространства в системе может присутствовать как подкачка энергии извне, так и ее рассеяние. На базе полученного материала проанализированы динамические системы, возникающие в динамике твердого тела. В результате обнаружен ряд случаев интегрируемости уравнений движения в трансцендентных (в смысле классификации их особенностей) функциях и выражающихся через конечную комбинацию элементарных функций.