RUS  ENG
Полная версия
ЖУРНАЛЫ // Труды семинара имени И. Г. Петровского // Архив

Тр. сем. им. И. Г. Петровского, 2014, выпуск 30, страницы 287–350 (Mi tsp84)

Эта публикация цитируется в 5 статьях

Многообразие случаев интегрируемости в пространственной динамике твердого тела в неконсервативном поле сил

М. В. Шамолин


Аннотация: Работа представляет собой обзор по полученным ранее, а также новым случаям интегрируемости в динамике трехмерного твердого тела, находящегося в неконсервативном поле сил. Исследуемые задачи описываются динамическими системами с так называемой переменной диссипацией с нулевым средним. Задача поиска полного набора трансцендентных первых интегралов систем с дисипацией является достаточно актуальной, и ей было ранее посвящено множество работ. Введен в рассмотрение новый класс динамических систем, имеющих периодическую координату. Благодаря наличию в таких системах нетривиальных групп симметрий показано, что рассматриваемые системы обладают переменной диссипацией, означающей, что в среднем за период по имеющейся периодической координате диссипация в системе равна нулю, хотя в разных областях фазового пространства в системе может присутствовать как подкачка энергии извне, так и ее рассеяние. На базе полученного материала проанализированы динамические системы, возникающие в динамике твердого тела. В результате обнаружен ряд случаев интегрируемости уравнений движения в трансцендентных (в смысле классификации их особенностей) функциях и выражающихся через конечную комбинацию элементарных функций.

УДК: 517.9+531.01


 Англоязычная версия: Journal of Mathematical Sciences (New York), 2015, 210:3, 292–330


© МИАН, 2024