Аннотация:
Рассматриваются однородные во времени и асимптотически однородные в пространстве цепи Маркова со значениями на вещественной оси, имеющие инвариантную меру. Такая мера всегда существует, если цепь эргодична. В работе продолжено изучение асимптотических свойств $\pi([x,\infty))$ при $x\to\infty$ для инвариантной меры $\pi$, начатое в [2], [3], [5]. В этих работах изучались главным образом ситуации, приводящие к чисто экспоненциальному убыванию $\pi([x,\infty))$. В предлагаемой работе рассмотрены два оставшихся альтернативных варианта: случай “степенного” убывания $\pi([x,\infty))$ и “смешанный” случай, когда $\pi([x,\infty))$ асимптотически ведет себя как $l(x)e^{-\beta x}$, где $l(x)$ – правильно меняющаяся на бесконечности интегрируемая функция и $\beta>0$.
Ключевые слова:цепь Маркова, инвариантная мера, грубая и точная асимптотики вероятностей больших уклонений.