RUS  ENG
Полная версия
ЖУРНАЛЫ // Теория вероятностей и ее применения // Архив

Теория вероятн. и ее примен., 2003, том 48, выпуск 2, страницы 249–253 (Mi tvp283)

Эта публикация цитируется в 3 статьях

Некоторые неравенства, связанные с усиленным законом больших чисел

А. Н. Колмогоров


Аннотация: История публикуемой ниже заметки А. Н. Колмогорова, написанной более 40 лет назад (она датируется автором апрелем 1962 г.), такова. В то время, будучи аспирантом Андрея Николаевича, я занимался обобщением и уточнением известного неравенства Чебышева. С результатами моих размышлений я выступил на семинаре А. Н. Колмогорова в МГУ. В 1962 году по просьбе С. Н. Бернштейна я написал комментарий к его статье “О некоторых видоизменениях неравенства Чебышева” (эта статья и комментарий к ней включены в четвертый том собрания сочинений С. Н. Бернштейна). Андрей Николаевич с интересом отнесся к моей работе, опубликованной в том же году в трудах МФТИ, и во время моего посещения Комаровки с отчетом о проделанной работе Андрей Николаевич дал мне рукопись небольшой его заметки. Он попросил меня ознакомиться с нею и подумать на эту тему, близкую к тому, о чем я рассказывал в моем докладе на его семинаре и писал в комментарии к работе С. Н. Бернштейна. Через некоторое время я сообщил А. Н. о своих соображениях и спросил его, не собирается ли он подготовить свою заметку к публикации. А. Н. ответил, что пока это не входит в его планы. Его рукопись осталась у меня и сохранилась в моем архиве.
Хотя она не содержит фундаментальных результатов, какими обычно отличались работы А. Н. Колмогорова, знакомство с тем, о чем он думал и над чем работал в этот плодотворный период его деятельности, несомненно, будет интересно и полезно как для сложившихся специалистов, так и для тех, кто только связывает свою научную деятельность с теорией вероятностей.
В рукописи, среди прочего, содержится формула (9), в которой $\varepsilon >0$ и $p\in (0,1)$, где $\mu_n$ — число успехов в $n$ испытаниях Бернулли с вероятностью успеха $p$. Для $p=\frac12$ в рукописи также указано более точное неравенство (8).
Следует отметить, что сходные неравенства приводятся в опубликованных позднее учебниках: Боровков А. А. Теория вероятностей. М.: Наука, 1986; Ширяев А. Н. Вероятность. М.: Наука, 1989.
В частности, на с. 131 первого учебника приведены неравенства
$$ P(\mu_n-np\ge \varepsilon)\le e^{-nH(p+\varepsilon/n)},\qquad P(\mu_n-np\le -\varepsilon)\le e^{-nH(p-\varepsilon/n)}, $$
где $H$ — некоторая функция, удовлетворяющая условию ${H(x)\ge 2x^2}\!\!$. На с. 81 второго учебника приведено неравенство $P(|\mu_n/n-p|\ge\varepsilon)$ $\le 2e^{-2n\varepsilon^2}$. Более внимательное исследование приема А. Н. Колмогорова, по всей видимости, может привести к неравенству $P(\sup_{k\ge n}|\mu_k/k-p|\ge \varepsilon)\le 2e^{-2n\varepsilon^2}$ для всех $p\in (0,1)$.
В заключение благодарю В. Ю. Королева и В. М. Круглова за помощь при подготовке рукописи к печати.
В. М. Золотарев

DOI: 10.4213/tvp283


 Англоязычная версия: Theory of Probability and its Applications, 2004, 48:2, 221–225

Реферативные базы данных:


© МИАН, 2024