Аннотация:
Рассматривается задача Дирихле как для параболических, так и для эллиптических уравнений. Решение соответствующей характеристической системы стохастических дифференциальных уравнений аппроксимируется в слабом смысле. Если состояние возникающей марковской цепи подходит близко к границе области, в которой рассматривается задача, то на следующем шаге цепь, согласно некоторому интерполяционному закону, либо останавливается на границе, либо уходит вглубь области с некоторой вероятностью. Приближенное решение задачи Дирихле получается в виде математического ожидания определенного функционала от траектории этой цепи. Таким образом становится возможным использование подхода Монте-Карло. Построенные в статье методы являются простейшими, поскольку применены слабые эйлеровские аппроксимации, а в качестве интерполяционного закона выбран линейный. Доказаны теоремы сходимости с указанием порядка точности. Приведены результаты тестирования полученных методов.
Ключевые слова:задача Дирихле для параболических и эллиптических уравнений, вероятностное представление, слабая аппроксимация решений стохастических дифференциальных уравнений, марковская цепь, случайное блуждание.