Аннотация:
Пусть $X_1,\dots,X_T$ — независимые случайные величины, равномерно распределенные на множестве $\{1,\dots,N\}$, и $X_{(1)}\leq X_{(2)}\leq\dots\leq X_{(T)}$ — построенный по ним вариационный ряд, а $\zeta(T,N)$ — число таких пар $(i, j)$, $1\leq i<j\leq T-1$, что $X_{(i+1)}-X_{(i)}=X_{(j+1)}-X_{(j)}$. Приводится полное доказательство теоремы о сходимости распределения $\zeta(T,N)$ к распределению Пуассона с параметром $\lambda$ при $T,N\to\infty$, $T^3/4N\to\lambda$. Эвристическое обоснование этого утверждения было приведено в книге Олдуса [2].
Ключевые слова:задача о днях рождения, вариационный ряд, спейсинги.