RUS  ENG
Полная версия
ЖУРНАЛЫ // Теория вероятностей и ее применения // Архив

Теория вероятн. и ее примен., 2002, том 47, выпуск 4, страницы 710–726 (Mi tvp3776)

Эта публикация цитируется в 10 статьях

Асимптотики больших уклонений винеровских полей в $L^p$-норме, нелинейные уравнения Хаммерштейна и гиперболические краевые задачи высокого порядка

В. Р. Фаталов

Московский государственный университет им. М. В. Ломоносова, механико-математический факультет

Аннотация: В работе для значений $1<p\leq 2$ вычислены точные асимптотики при $u \rightarrow \infty$ вероятностей
$$ \mathbf{P}\biggl\{\biggl(\int_{[0,1]^n}|X(t)|^p\,dt\biggr)^{1/p}>u\biggr\} $$
для двух гауссовских полей: винеровского поля Йеха–Ченцова и так называемой “винеровской подушки” — многопараметрических аналогов винеровского процесса и броуновского моста. Эти гауссовские поля имеют нулевые средние и ковариационные функции вида: $\prod_{i=1}^n[\min(t_i,s_i)-t_is_i]$, $t=(t_1,\dots,t_n)$, $s=(s_1,\dots,s_n)$.
Метод исследования — метод Лапласа в банаховых пространствах. Выявлена связь рассматриваемой задачи с теорией нелинейных уравнений Хаммерштейна в $\mathbf{R}^n$ и гиперболическими краевыми задачами высокого порядка. Даны решения двух таких частных задач.

Ключевые слова: винеровское поле Йеха–Ченцова, “винеровская подушка”, метод Лапласа в банаховых пространствах, ковариационный оператор гауссовой меры, нелинейные уравнения Хаммерштейна, гиперболические краевые задачи высокого порядка.

Поступила в редакцию: 11.09.2000

DOI: 10.4213/tvp3776


 Англоязычная версия: Theory of Probability and its Applications, 2003, 47:4, 623–636

Реферативные базы данных:


© МИАН, 2024