RUS  ENG
Полная версия
ЖУРНАЛЫ // Теория вероятностей и ее применения // Архив

Теория вероятн. и ее примен., 1993, том 38, выпуск 4, страницы 858–868 (Mi tvp4023)

Cramér type large deviations for some $U$-statistics

T. Inglot, T. Ledwinaa

a Institute of Mathematics, Technical University of Wroclaw, Wroclaw, Poland

Аннотация: We prove Cramér type large deviations for some $U$-statistics of degree two with kernel $h(x,y)$ being of bounded variation on bounded rectangles. The proof consists of two basic steps. First some explicit bounds (similar to Helmers' bounds for $L$-statistics) for the $U$-statistics are obtained. Then Linnik's result and some results exploiting strong approximations are applied.

Ключевые слова: $U$-statistics, large deviations, strong approximations.

Поступила в редакцию: 26.06.1990

Язык публикации: английский


 Англоязычная версия: Theory of Probability and its Applications, 1993, 38:4, 651–659

Реферативные базы данных:


© МИАН, 2025