RUS  ENG
Полная версия
ЖУРНАЛЫ // Теория вероятностей и ее применения // Архив

Теория вероятн. и ее примен., 2010, том 55, выпуск 2, страницы 373–382 (Mi tvp4209)

Эта публикация цитируется в 2 статьях

Краткие сообщения

Асимптотика на бесконечности отрицательно биномиально безгранично делимых распределений

А. Л. Якымив

Математический институт им. В. А. Стеклова РАН

Аннотация: Согласно С. Янкович (Publ. Inst. Math. (Beograd), 1993, v. 54, p. 126–134), случайная величина $Y$ имеет отрицательно биномиально безгранично делимое распределение тогда и только тогда, когда ее характеристическая функция $\varphi(t)$ допускает представление
$$ \varphi(t)=\frac{1}{(1-\ln\psi(t))^{r}} $$
для некоторых $r>0$ и безгранично делимой характеристической функции $\psi(t)$. В настоящей статье для некоторого класса случайных величин $Y$ с отрицательно биномиально безгранично делимым распределением получена асимптотика $\mathbf{P}\{Y>t\}$ при $t\to\infty$, выраженная в терминах спектральной меры представления Леви безгранично делимой характеристической функции $\psi(t)$.

Ключевые слова: отрицательно биномиально безгранично делимое распределение, характеристическая функция, спектральная мера Леви, преобразование Лапласа, слабо осциллирующие функции, мажорируемо меняющиеся функции, слабая эквивалентность функций на бесконечности.

Поступила в редакцию: 22.09.2008

DOI: 10.4213/tvp4209


 Англоязычная версия: Theory of Probability and its Applications, 2011, 55:2, 342–351

Реферативные базы данных:


© МИАН, 2024