RUS  ENG
Полная версия
ЖУРНАЛЫ // Теория вероятностей и ее применения // Архив

Теория вероятн. и ее примен., 2011, том 56, выпуск 4, страницы 742–772 (Mi tvp4421)

Эта публикация цитируется в 10 статьях

$q$-Wiener and $(\alpha, q)$-Ornstein–Uhlenbeck processes. A generalization of known processes

P. J. Szabłowski

Warsaw University of Technology

Аннотация: Мы собираем разбросанные в литературе и доказываем некоторые новые свойства двух марковских процессов, во многом сходных с винеровским процессом и процессом Орнштейна–Уленбека. Хотя рассматриваемые в настоящей работе процессы были определены в контексте некоммутативной вероятности или через квадратические связки (harnesses), мы определяем их заново как своего рода обобщение “для непрерывного времени” простых симметричных процессов с дискретным временем, удовлетворяющих простым условиям на форму первых двух условных моментов. Конечномерные распределения первого из этих процессов (скажем, $\mathbf{X}=(X_t)_{t\geq 0}$, называемого $q$-винеровским, зависят от одного параметра $q\in (-1, 1]$, а конечномерные распределения второго (скажем, $\mathbf{Y}=(Y_t)_{t\in\mathbf{R}}$, называемого $(\alpha,q)$-процессом Орнштейна–Уленбека, — от двух параметров $(\alpha, q)\in (0,\infty)\times (-1, 1]$. Первый процесс имеет с винеровским то общее, что при $q=1$ он сам является винеровским, а при $|q|<1$ для любого $n\geq 1$ процесс $t^{n/2}H_n (X_t/\sqrt{t}|q)$, где $(H_n)_{n\geq 0}$ — так называемые $q$- полиномы Эрмита, является мартингалом. Он, однако, не имеет ни независимых приращений, ни модификации с непрерывными траекториями. Второй процесс сходен с процессом Орнштейна–Уленбека. При $q=1$ он превращается в классический процесс Орнштейна–Уленбека. При $|q|<1$ он является стационарным процессом с корреляционной функцией $\exp (-\alpha |t-s|)$ и обладает многими свойствами, сходными со свойствами классической версии. Эти процессы представляются нам захватывающим предметом для исследования, предлагающим много интересных открытых вопросов.

Ключевые слова: винеровский процесс, $q$-процесс Орнштейна–Уленбека, полиномиальное мартингальное свойство, $q$-гауссовские распределения, квадратические связки (harnesses), строго марковское.

Поступила в редакцию: 03.08.2010
Исправленный вариант: 24.07.2011

Язык публикации: английский

DOI: 10.4213/tvp4421


 Англоязычная версия: Theory of Probability and its Applications, 2011, 56:4, 634–659

Реферативные базы данных:


© МИАН, 2024