Аннотация:
Начиная с обсуждения взаимосвязи между фрактальным и бифрактальным броуновскими движениями на вещественной прямой, мы устанавливаем, что фрактальное броуновское движение можно разложить в независимую сумму бифрактального броуновского движения и трифрактального броуновского движения, которое определяется в настоящей работе. Более общим образом, ортогональные разложения такого типа имеют место для широкого класса гауссовских или сферически инвариантных случайных функций, ковариационные функции которых являются ядрами Шёнберга–Леви во временной, пространственной или пространственно-временной области. Также построено много самоподобных, нестационарных (гауссовских) случайных функций и изучены свойства трифрактального броуновского движения. В частности, показано, что бифрактальное броуновское движение на $\mathbf{R}^d$ является “квазиспиралью” в смысле Кахана.