Аннотация:
Гауссовский случайный элемент $\eta$ со значениями в банаховом пространстве $X$ с базисом Шаудера $\mathbf{e} = (en)$ назовем диагонально каноническим (для краткости $D$-каноническим) относительно базиса $\mathbf{e}$, если распределение $\eta$ совпадает с распределением случайного элемента вида $B\xi$, где $\xi$ — гауссовский случайный элемент со значениями в $X$, компоненты которого относительно базиса $\mathbf{e}$ стохастически независимы, и $B\colon X\to X$ — линейный непрерывный оператор. В данной статье мы доказываем, что если $X=l_p$, $1\le p<\infty$ и $p\ne 2$, или $X=c_0$, то существует гауссовский случайный элемент $\eta$ в $X$, который не является $D$-каноническим относительно естественного базиса $X$. Мы выводим этот результат в случае $X=l_p$, $2<p<\infty$, или $X=c_0$ из следующего утверждения, аналог которого ранее был известен для некоторых банаховых пространств, не обладающих безусловным базисом Шаудера: если $X=l_p$, $2<p<\infty$, или $X=c_0$, то существует гауссовский случайный элемент $\eta$ в $X$ такой, что распределение $\eta$ не совпадает с распределением суммы почти наверное сходящегося ряда$\sum_{n=1}^\infty x_ng_n$в $X$, где $(x_n)$ — безусловно суммируемая последовательность элементов в $X$ и $(g_n)$ — последовательность стохастически независимых стандартных гауссовских случайных величин.