Аннотация:
В работе рассматриваются случайные симметричные матрицы с зависимыми элементами. Предположим, что элементы матрицы имеют нулевое математическое ожидание и конечные дисперсии, которые могут быть различными числами. Предполагая выполнение условия Линдеберга и сходимость нормированных сумм дисперсий в каждой строке и столбце к единице, мы доказываем, что ожидаемая эмпирическая спектральная функция распределения собственных значений матрицы сходится к полукруговому закону Вигнера. Результат может быть обобщен на класс ковариационных матриц с зависимыми элементами. В этом случае ожидаемая эмпирическая спектральная функция распределения сходится к закону Марченко–Пастура.
Ключевые слова:случайные матрицы, полукруговой закон, закон Марченко–Пастура, числа Каталана.