Аннотация:
Основной результат является аналогом теоремы Монро (1978) в случае геометрического броуновского движения: случайный процесс эквивалентен замене времени в геометрическом броуновском движении тогда и только тогда, когда он есть неотрицательный супермартингал. Мы также указываем на связь нашего основного результата с работой Монро (1972). Эта связь основана на понятии минимального момента остановки и его характеризации в работах Монро (1972) и Кокса и Хобсона (2006) в случае броуновского движения. В заключение мы предлагаем достаточное условие для минимальности для процессов, отличных от броуновского движения, дополняя обсуждение в указанных работах.