RUS  ENG
Полная версия
ЖУРНАЛЫ // Теория вероятностей и ее применения // Архив

Теория вероятн. и ее примен., 2015, том 60, выпуск 3, страницы 525–552 (Mi tvp4636)

Эта публикация цитируется в 5 статьях

Classification of Lévy processes with parabolic Kolmogorov backward equations

K. Glau

Technische Universität München

Аннотация: Процессы Леви классифицируются в соответствии с пространствами решений ассоциированных интегро-дифференциальных уравнений с частными производными: параболичность соответствующих уравнений Колмогорова переносится на условие роста символа с индексом Соболева $\alpha$. Показывается, что соответствующая эволюционная задача является параболической для пространства Соболева–Слободецкого $H^{\alpha/2}$ тогда и только тогда, когда процесс имеет индекс Соболева $\alpha$. Мы соотносим индекс Соболева с индексом Блюменталя–Гетура. Это показывает, что индекс Соболева является индикатором как гладкости распределения, так и вариации траектории процесса. Приводятся различные примеры процессов Леви с индексом Соболева и без него. В заключение мы демонстрируем влияние индекса Соболева на работу численных схем решения краевых задач, соответствующих процессам CGMY (Carr–Geman–Madan–Yor).

Ключевые слова: процессы Леви, интегро-дифференциальные уравнения с частными производными, символ процесса Леви, слабые решения, параболическое эволюционное уравнение, пространства Соболева–Слободецкого, метод Галёркина, расчет опциона.

Поступила в редакцию: 19.06.2013
Исправленный вариант: 27.04.2014

Язык публикации: английский

DOI: 10.4213/tvp4636


 Англоязычная версия: Theory of Probability and its Applications, 2016, 60:3, 383–406

Реферативные базы данных:


© МИАН, 2024