Аннотация:
В работе рассматривается задача оптимальной остановки $v^{(\varepsilon)}:=\sup_{\tau\in \mathscr{T}_{0,T}}\mathbf{E}\,B_{(\tau-\varepsilon)^+}$, сформулированная А. Н. Ширяевым в докладе, сделанном на Международной конференции “Stochastic Optimization and Optimal Stopping”, организованной Математическим институтом им. В.А. Стеклова в Москве в сентябре 2012 года. Пусть $T>0$ — фиксированный временной горизонт, $(B_t)_{0\le t\le T}$ — броуновское движение, $\varepsilon\in[0,T]$ — некоторая константа и $\mathscr{T}_{\varepsilon,T}$ — множество моментов остановки со значениями на $[\varepsilon,T]$.
Решение этой задачи описывается обратными стохастическими дифференциальными уравнениями с отражением, коэффициенты которых зависят от траекторий, что влечет непрерывность $\varepsilon \to v^{(\varepsilon)}$. Для достаточно больших $\varepsilon$ в работе получено явное выражение для $v^{(\varepsilon)}$, для малых $\varepsilon$ получены верхняя и нижняя оценки.
Основным результатом статьи является асимптотика $v^{(\varepsilon)}$ при $\varepsilon\searrow 0$. Помимо этого в статье получена теорема Леви о модуле непрерывности в $L^1$-норме.
Ключевые слова:задача оптимальной остановки инсайдера, теорема Леви о модуле непрерывности для броуновского движения.