Аннотация:
Изучаются массивы, строки которых представляют собой наборы случайных величин, являющихся условно независимыми относительно некоторых $\sigma$-алгебр. Доказывается аналог теоремы Линдеберга–Феллера, известной для систем независимых случайных величин. Этот результат основан на теореме, доказанной D-M. Yuan, L-R. Wei, L. Lei в [19], авторы которой рассматривали последовательность случайных величин, условно независимых относительно заданной $\sigma$-алгебры. При этом их интересовала сходимость почти наверное, а наш вариант условия Линдеберга в слабой форме (вовлекающий сходимость по вероятности) является менее ограничительным. Дается применение упомянутого нового результата для массивов к расширению условий справедливости асимптотической нормальности оценок второго момента функции регрессии, предложенных в недавней статье L. Györfi, H. Walk [18].
Ключевые слова:условная независимость, условные характеристические функции, массив случайных величин, условная центральная предельная теорема, моменты функции регрессии, выбор значимых факторов.