Аннотация:
Пусть $X,X_1,\dots,X_n$ — независимые одинаково распределенные случайные величины. В статье изучается поведение функций концентрации взвешенных сумм $\sum_{k=1}^nX_ka_k $ в зависимости от арифметической структуры коэффициентов $a_k$. Полученные за последние десять лет результаты для функций концентрации взвешенных сумм играют важную роль в изучении сингулярных чисел случайных матриц. Недавно Тао и Ву сформулировали так называемый обратный принцип в проблеме Литтлвуда–Оффорда. В статье обсуждаются соотношения между этим обратным принципом и аналогичным принципом для сумм произвольно распределенных независимых случайных величин, сформулированным Т. Араком в 1980-х годах.
Ключевые слова:функции концентрации, неравенства, проблема Литтлвуда–Оффорда, суммы независимых случайных величин.
Поступила в редакцию: 11.04.2016 Исправленный вариант: 30.09.2016 Принята в печать: 20.10.2016