RUS  ENG
Полная версия
ЖУРНАЛЫ // Теория вероятностей и ее применения // Архив

Теория вероятн. и ее примен., 2017, том 62, выпуск 2, страницы 365–392 (Mi tvp5117)

Эта публикация цитируется в 4 статьях

$N$-Branching random walk with $\alpha$-stable spine

B. Malleinab

a Laboratoire de Probabilités et Modéles Aléatoires, Université Pierre et Marie Curie (Paris 6)
b Département de Mathématiques et Applications, Ècole Normale Supérieure, Paris, France

Аннотация: We consider a branching-selection particle system on the real line, introduced by Brunet and Derrida in [Phys. Rev. E, 56 (1997), pp. 2597–2604]. In this model the size of the population is fixed to a constant $N$. At each step individuals in the population reproduce independently, making children around their current position. Only the $N$ rightmost children survive to reproduce at the next step. Bérard and Gouéré studied the speed at which the cloud of individuals drifts in [Comm. Math. Phys., 298 (2010), pp. 323–342], assuming the tails of the displacement decays at exponential rate; Bérard and Maillard [Electron. J. Probab., 19 (2014), 22] took interest in the case of heavy tail displacements. We take interest in an intermediate model, considering branching random walks in which the critical “spine” behaves as an $\alpha$-stable random walk.

Ключевые слова: branching random walk, selection, stable distribution.

Поступила в редакцию: 23.03.2015
Исправленный вариант: 15.09.2015

Язык публикации: английский

DOI: 10.4213/tvp5117


 Англоязычная версия: Theory of Probability and its Applications, 2018, 62:2, 295–318

Реферативные базы данных:


© МИАН, 2024