Аннотация:
Пусть $\boldsymbol{\xi}(t)=(\xi_{1}(t),\dots,\xi_{d}(t))$ — гауссовский стационарный центрированный п.н. непрерывный векторный процесс. Пусть $g\colon\mathbf{R}^{d}\to\mathbf{R}$ есть однородная функция положительного порядка Изучается асимптотическое поведение вероятности высокого выброса процесса гауссовского хаоса $g(\boldsymbol{\xi}(t))$. Известными примерами являются произведения гауссовских процессов $\prod _{i=1}^{d}\xi_{i}(t)$ и квадратичные формы $\sum_{i,j=1}^{d}a_{ij}\xi_{i}(t)\xi_{j}(t)$. Предлагаемая в работе методология включает в себя асимптотический метод Лапласа, асимптотический метод двойных сумм исследования гауссовских процессов, с применяемой впервые предварительной аппроксимацией процессов в непрерывном времени процессами с дискретным временем.
Ключевые слова:гауссовский процесс, гауссовский хаос, вероятности высоких выбросов, метод Лапласа, метод двойных сумм.
Поступила в редакцию: 11.01.2017 Исправленный вариант: 01.08.2017