Аннотация:
В работе изучается асимптотическое поведение одношаговых взвешенных $M$-оценок, построенных по выборке независимых необязательно одинаково распределенных случайных величин и являющихся явными приближениями для соответствующих состоятельных $M$-оценок. Найдены достаточно общие условия асимптотической нормальности изучаемых оценок.
В качестве приложений рассматриваются классические задачи нелинейной регрессии, для которых процедура одношагового оценивания позволяет в явном виде находить оценки, совпадающие по точности с оценками наименьших квадратов или квазиправдоподобия.