RUS  ENG
Полная версия
ЖУРНАЛЫ // Теория вероятностей и ее применения // Архив

Теория вероятн. и ее примен., 2017, том 62, выпуск 3, страницы 499–517 (Mi tvp5127)

Эта публикация цитируется в 15 статьях

Характеризационная теорема Хейде на некоторых локально компактных абелевых группах

Г. М. Фельдман

Физико-технический институт низких температур им. Б. И. Веркина НАН Украины, Харьков, Украина

Аннотация: Согласно теореме Хейде, гауссовское распределение на вещественной прямой характеризуется симметрией условного распределения одной линейной формы от $n$ независимых случайных величин при фиксированной второй. При $n=2$ мы доказываем аналоги этой теоремы в случае, когда случайные величины принимают значения в локально компактной абелевой группе $X$, а коэффициенты линейных форм — топологические автоморфизмы $X$.

Ключевые слова: локально компактная абелева группа, гауссовское распределение, условное распределение.

Поступила в редакцию: 15.02.2016
Исправленный вариант: 01.02.2017
Принята в печать: 20.02.2017

DOI: 10.4213/tvp5127


 Англоязычная версия: Theory of Probability and its Applications, 2018, 62:3, 399–412

Реферативные базы данных:


© МИАН, 2024