Аннотация:
Рассматриваются процессы вида $\mu(t)=\mu((0,t])$, где $\mu$ — $\sigma$-аддитивная по вероятности случайная функция множеств. Доказаны утверждения о сходимости случайного ряда Фурье к значениям $\mu(t)$, с использованием аналогов сумм Фейера получена аппроксимация интегралов по $\mu$. Для этих аппроксимаций показана сходимость решений уравнения теплопроводности, управляемого $\mu$.