Эта публикация цитируется в
1 статье
Weighted Poisson–Delaunay mosaics
H. Edelsbrunner,
A. Nikitenko Institute of Science and Technology Austria, Klosterneuburg, Austria
Аннотация:
Slicing a Voronoi tessellation in
$\mathbf{R}^n$ with a
$k$-plane gives
a
$k$-dimensional weighted Voronoi tessellation, also known as a power diagram
or Laguerre tessellation. Mapping every simplex of the dual weighted Delaunay
mosaic to the radius of the smallest empty circumscribed sphere whose center
lies in the
$k$-plane gives a generalized discrete Morse function. Assuming the
Voronoi tessellation is generated by a Poisson point process in
$\mathbf{R}^n$,
we study the expected number of simplices in the
$k$-dimensional weighted
Delaunay mosaic as well as the expected number of intervals of the Morse
function, both as functions of a radius threshold. As a by-product, we obtain
a new proof for the expected number of connected components (
clumps) in
a line section of a circular Boolean model in
$\mathbf{R}^n$.
Ключевые слова:
Voronoi tessellations, Laguerre distance, weighted Delaunay mosaics, discrete Morse theory, critical simplices, intervals, stochastic geometry, Poisson point process, Boolean model, clumps, Slivnyak–Mecke formula, Blaschke–Petkantschin formula.
MSC: 60D05;
68U05 Поступила в редакцию: 17.03.2018
DOI:
10.4213/tvp5196