Аннотация:
Рассматривается докритический ветвящийся процесс в случайной среде, компоненты которой одинаково распределены и независимы. Предполагается, что к каждому поколению частиц присоединяется ровно один иммигрант. Пусть $\mathcal{A}_i(n)$ — событие, состоящее в том, что все частицы основного процесса, живущие в момент $n$, являются потомками иммигранта, присоединившегося к популяции в момент $i$. Исследуется асимптотическое поведение вероятности этого события при $n\to\infty$ в случаях, когда $i$ фиксировано, разность $n-i$ постоянна и, наконец, когда $\min(i,n-i)\to\infty$. Для нахождения интересующих нас асимптотик мы доказали несколько предельных теорем о свойствах случайных блужданий, остающихся либо неотрицательными, либо неположительными на промежутке $[0,n]$.