Аннотация:
Рассматривается критический ветвящийся процесс Гальтона–Ватсона $Z=\{Z_n:n=0,1,\dots\}$ индекса $1+\alpha$, $\alpha\in(0,1]$. Пусть $S_k(j)$ обозначает сумму числа частиц $Z_n$ по всем $n$, находящимся внутри окна $[k,\dots,k+j)$, а $M_m(j)$ — максимум $S_k(j)$ по всем $k$, меняющимся в промежутке $[0,m-j]$. Мы описываем асимптотическое поведение математического ожидания $\mathbf{E}M_m(j)$ в случае, когда ширина окна $j=j_m$ удовлетворяет условию $j/m\to\eta\in[0,1]$ при $m\uparrow\infty$. При получении указанной асимптотики используются асимптотические свойства хвоста распределения случайной величины $M_{\infty}(j)$.
Ключевые слова:ветвление индекса один плюс альфа, предельная теорема, условный принцип инвариантности, асимптотика хвоста, скользящее окно, максимум общего числа частиц, вероятности малых уклонений.
Поступила в редакцию: 16.01.2006 Исправленный вариант: 02.04.2007