RUS  ENG
Полная версия
ЖУРНАЛЫ // Теплофизика высоких температур // Архив

ТВТ, 2019, том 57, выпуск 6, страницы 821–831 (Mi tvt11215)

Эта публикация цитируется в 5 статьях

Статьи, опубликованные в английской версии журнала
Исследование плазмы

Optical emission and Langmuir probe diagnostic measurements in DC electrode pulse discharge in nitrogen

A. Qayyuma, F. Deebaa, S. Ahmada, Z. Ahmada, M. U. Naseera, S. I. W. Shaha, S. Hussaina, M. Zakaullahb

a National Tokamak Fusion Program 3329, Islamabad, Pakistan
b Rafi M. Chaudhri Chair, Center for Advanced Studies in Physics, GC University 54000 Lahore, Pakistan

Аннотация: Optical emission of selected nitrogen bands is analyzed for different nitrogen fill pressure and input electrical power to find the changes in spectral intensities with changing discharge conditions. The electron temperature $T_e$ is inferred from the intensity ratio $(I^+_{BX}/I_{CB})$ of $(0$$0$, $391.44$ nm$)$ and $(0$$2$, $380.49$ nm$)$ band heads whereas electron number density $n_e$ from the intensity ratio and the corresponding rate coefficient $X~($cm$^3$ s$^{–1})$ for the given temperatures. Both band heads belonging to the first negative system and second positive system of nitrogen have a different threshold of excitation energies, and therefore the corresponding emission intensities provide a direct correlation between the group of electrons involved in optical emission (a part of electron energy distribution function above the excitation and ionization thresholds) and electron temperature. Measured intensity ratio $(I^+_{BX}/I_{CB})$ and resulting $T_e$ both increase with input power and decrease with gas fill pressure following almost the same trend. Besides, time-averaged triple probe measurements have been performed to determine $T_{\mathrm{eff}}$ and $n_e$ under the same discharge conditions for the sake of comparison. The spectroscopic method provides the variation of $T_e$ and $n_e$ at various discharge power and gas pressure in comparison with probe measurements. This study will help to optimize the discharge conditions in terms of active species concentration, electron temperature and electron number density for technological applications.

Поступила в редакцию: 04.04.2019
Исправленный вариант: 02.05.2019
Принята в печать: 22.10.2019

Язык публикации: английский


 Англоязычная версия: High Temperature, 2019, 57:6, 821–831

Реферативные базы данных:


© МИАН, 2024