Аннотация:
Рассмотрена двумерная по пространству система уравнений идеального политропного газа на вращающейся плоскости, возникающая в задачах динамики атмосферы. В общей постановке система очень сложна, однако она допускает решения с линейным по пространственным переменным профилем скорости (отвечающим движениям с однородной деформацией), нахождение которых сводится к решению квадратично-нелинейной системы обыкновенных дифференциальных уравнений. Эта система обладает двумя семействами особых точек: однопараметрическим вихревым и двупараметрическим, отвечающим сдвиговому течению газа, которое всегда является неустойчивым. Устойчивость этих особых точек означает устойчивость стационарных решений исходной системы в классе возмущений с линейным профилем скорости. В работе исследуется однопараметрическое семейство особых точек, отвечающее стационарному вихревому движению, параметр отвечает интенсивности вихря и может изменяться на всей действительной оси. Ранее были найдены промежутки изменения параметра, в которых имеет место неустойчивость, а также устойчивость по Ляпунову. Эти промежутки, однако, не покрывали всю действительную ось. Для оставшихся интервалов матрица линеаризации имеет три пары комплексно-сопряженных собственных значений с нулевыми действительными частями, поэтому исследование устойчивости традиционными методами затруднено. Мы исследуем этот вопрос при помощи перехода в лагранжевы координаты. Удается построить оценки, которые дают интервалы гарантированной устойчивости. Для газа с одной, двумя и тремя степенями свободы вопрос об устойчивости решен полностью.
Ключевые слова:идеальный политропный газ, движение с однородной деформацией, положения равновесия.
УДК:
517.9 ББК:
22.1.
Поступила в редакцию: 5 февраля 2020 г. Опубликована: 31 июля 2019 г.