Аннотация:
Обсуждаются основные вычислительные проблемы в задачах цифровой экономики, связанные в первую очередь с обработкой и анализом данных больших объемов, организацией вычислительных процессов и повышением точности численных процедур. Подход основан на применении новых методов агрегации данных на основе вычислительного вероятностного анализа, использовании вероятностных расширений и численных операций над кусочно-полиномиальными функциями. Одной из наиболее важных проблем численного моделирования больших данных является задача вычисления функциональных зависимостей. Для выявления зависимостей в больших данных предлагается использовать функциональную регрессию в пространстве эмпирических распределений. Рассматриваются новые методы моделирования функциональных зависимостей на основе кусочно-полиномиальных аппроксимаций. Для анализа и повышения точности вычислений используется подход, основанный на правиле Рунге и экстраполяции Ричардсона. Для организации вычислительного процесса применяется рекурсивно-параллельная схема, основанная на свойствах вероятностных расширений. Такой подход обеспечивает технику быстрых и надежных вычислений в условиях больших объемов данных для различных типов неопределенности. В качестве примера рассматривается задача оценки инвестиционных рисков. Рассчитываются функции плотности вероятности таких факторов, как чистая текущая стоимость (NPV) и внутренняя норма доходности (IRR).
Ключевые слова:цифровая экономика, большие данные, вычислительный вероятностный анализ, функциональная регрессия, экстраполяция Ричардсона, оценки рисков.
УДК:519.24 ББК:
22.193
Поступила в редакцию: 24 декабря 2019 г. Опубликована: 31 июля 2019 г.