Аннотация:
Разработка и использование инноваций определяют магистральный путь устойчивого развития организаций любого типа и являются необходимым условием экономического роста. В статье рассмотрены задачи мотивации сотрудников организации к продвижению инноваций путем распределения вознаграждения, формализованные как кооперативные дифференциальные игры. При построении таких игр использованы три различные характеристические функции: классическая функция Неймана – Моргенштерна, функции Петросяна – Заккура и Петросяна – Громовой. Первая всегда супераддитивна, но исходит из не вполне реалистичной гипотезы антагонизма между данной и дополнительной коалицией. Вторая более адекватно использует выигрыши игроков в равновесии Нэша, но не всегда гарантирует супераддитивность. Третья функция обеспечивает некий компромисс, гарантируя супераддитивность и используя гарантированный выигрыш коалиции при выборе ее участниками кооперативных стратегий. Во всех трех случаях в качестве решения игры использован вектор Шепли, компоненты которого находились аналитически и численно с использованием пакета Maple. Проведен сравнительный анализ результатов для тестового примера с тремя игроками для различных параметров модели, сделаны выводы относительно эффективности указанных способов распределения вознаграждения.
Ключевые слова:вектор Шепли, кооперативные дифференциальные игры, управление инновациями.
УДК:
512.8 ББК:
22.14+22.19.73
Поступила в редакцию: 24 сентября 2019 г. Опубликована: 31 мая 2020 г.