Аннотация:
Исследуется практически важный эффект максимального отклонения траектории в линейных динамических системах при ненулевых начальных условиях. Исследование переходного процесса является актуальным и практически значимым направлением в изучении линейных систем. В качестве основного способа получения оценок в настоящей работе используется построение общей квадратичной функции Ляпунова для семейства систем с неопределенностями, а также метод инвариантных эллипсоидов. Все полученные результаты остаются справедливыми также для случая нестационарной неопределенности, поскольку единственное требование к ней – это ее ограниченность в спектральной норме. Поставлены и решены задачи анализа и синтеза, а также получены верхние оценки отклонений для линейных дискретных систем, содержащих структурированную матричную неопределенность. Полученные результаты сформулированы в виде задач полуопределенного программирования, легко решаемых численным образом с помощью стандартных программных пакетов. Применение техники линейных матричных неравенств позволило минимизировать величину отклонений при стабилизации системы с помощью статической линейной обратной связи по состоянию. Результаты численного моделирования демонстрируют низкую степень консерватизма полученных оценок и обладают большим потенциалом для обобщений.