Аннотация:
Вводится в рассмотрение процедура “квантовой” линеаризации гамильтоновых обыкновенных дифференциальных уравнений с одной степенью свободы. Ее предлагается использовать, в частности, для классификации интегрируемых уравнений типа Пенлеве. При всех натуральных $n$ c помощью данной процедуры строятся решения $\Psi(\hbar,t,x,n)$ нестационарного уравнения Шредингера для осциллятора c гамильтонианом $H=(p^2+q^2)/2$, которые экспоненциально стремятся к нулю при $x\to\pm\infty$, и на кривых $x=q_n(\hbar,t)$, выделяемых старым вариантом правила Бора–Зоммерфельда, удовлетворяют соотношению $i\hbar\Psi'_x\equiv p_n(\hbar,t)\Psi$, где $p_n(\hbar,t)=(q_n(\hbar,t))'_t$ – классический импульс, соответствующий гармонике $q_n(\hbar,t)$.